

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering

Fall 2023

ADVANCED TOPICS IN COMPUTER VISION

Atlas Wang Associate Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin https://vita-group.github.io/

The Rise of Automation for ML

₹.

Hyperparameter Tuning (algorithm optimization)

Auto-Weka, Auto-sklearn, H2O AutoML...

Neural Architecture Search (model construction)

Auto-Keras, AutoGluon...

Platform & Full Pipeline Automation Google Cloud AutoML, AWS Autopilot, H2O Driverless AI ...

Traditional ML Lifecycle

- Model: What to Use
 - By cross-validation, trial-and-error ...
 - Or experience (a.k.a. luck)
- Algorithm: How to Train
 - Analytical algorithms, or heuristics
 - Deep learning: SGD etc. for them all
- Hardware: How to Deploy
 - Manual design of hardware & system
 - ... and separately from model/algorithm

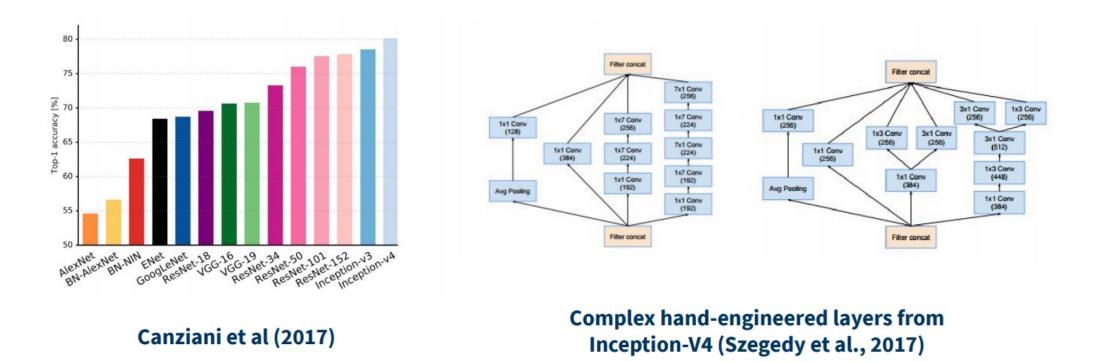
Automated ML Lifecycle

- Model: What to Use
 - Automatically discover the best model from the specific problem and data

• Algorithm: How to Train

- Automatically customize an algorithm for the specific problem, data & model
- Hardware: How to Deploy
 - Automatically explore the co-design space for joint system-level optimization

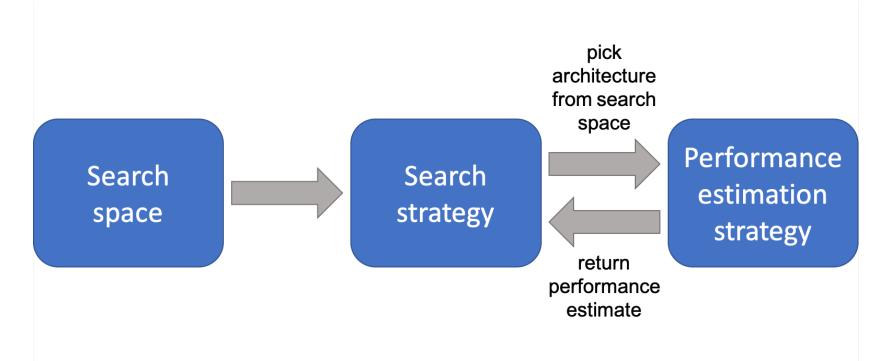
Architecture: the workhorse of Deep Learning



Design Innovations (2012 - Present): Deeper networks, stacked modules, skip connections, squeeze-excitation block, ...

Can we try and learn good architectures automatically?

Neural Architecture Search (NAS)



- View 1: NAS as constrained optimization
- View 2: NAS as an MCMC process

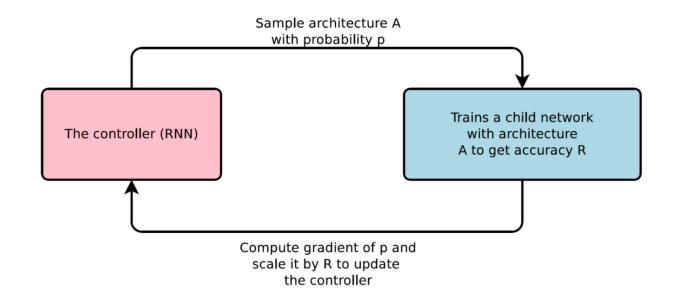
NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING

Barret Zoph, Quoc V. Le Google Brain

DESIGNING NEURAL NETWORK ARCHITECTURES USING REINFORCEMENT LEARNING

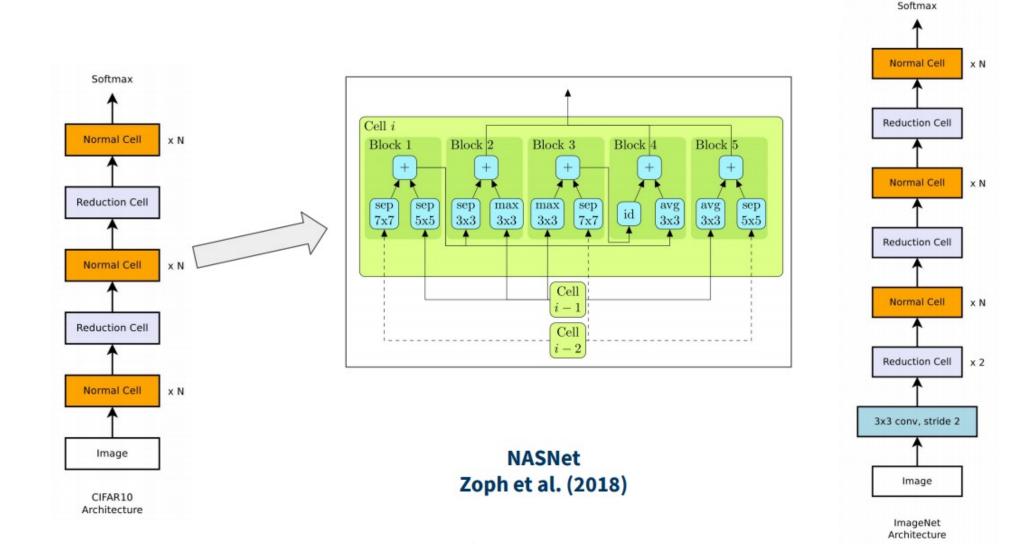
Bowen Baker, Otkrist Gupta, Nikhil Naik & Ramesh Raskar Media Laboratory Massachusetts Institute of Technology

Key Ideas: NAS via RL: Zoph and Le (2017)



Represent	Specify the structure and connectivity of a NN by a configuration string (e.g., ["Filter Width: 5", "Filter Height: 3", "Num Filters: 24"])			
Sample	Use a RNN ("Controller") to generate this string that specifies a neural network architecture			
Evaluate	Train this architecture ("Child Network") to see its performance on a validation set			
Update	Use RL to update the parameters of the Controller model based on the accuracy ("Reward") of the child model			

Cell-based Search Space



Results on CIFAR-10

Model	Depth	Parameters	Error rate (%)
Wide ResNet (Zagoruyko & Komodakis, 2016)	16	11.0M	4.81
	28	36.5M	4.17
ResNet (pre-activation) (He et al., 2016b)	164	1.7M	5.46
	1001	10.2M	4.62
DenseNet $(L = 40, k = 12)$ [Huang et al.] (2016a)	40	1.0M	5.24
DenseNet $(L = 100, k = 12)$ Huang et al. (2016a)	100	7.0M	4.10
DenseNet $(L = 100, k = 24)$ Huang et al. (2016a)	100	27.2M	3.74
DenseNet-BC ($L = 100, k = 40$) Huang et al. (2016b)	190	25.6M	3.46
Neural Architecture Search v1 no stride or pooling	15	4.2M	5.50
Neural Architecture Search v2 predicting strides	20	2.5M	6.01
Neural Architecture Search v3 max pooling	39	7.1M	4.47
Neural Architecture Search v3 max pooling + more filters	39	37.4M	3.65
MetaQNN (Baker et al. 2017) no skip connections	12	11.8M	6.92

Comparable accuracy to best human-designed models ~2017

Softmax

FH: 7 FW: 5 N:

FH: 7 FW: 5 N: 4

FH: 7 FW: 5 N: 44

FH: 5 FW: 7 N:

FH: 7 FW: 7 N: 3

FH: 7 FW: 1 N

FH: 7 FW: 3 N

FH: 7 FW: 7 N

FH: 7 FW: 7 N

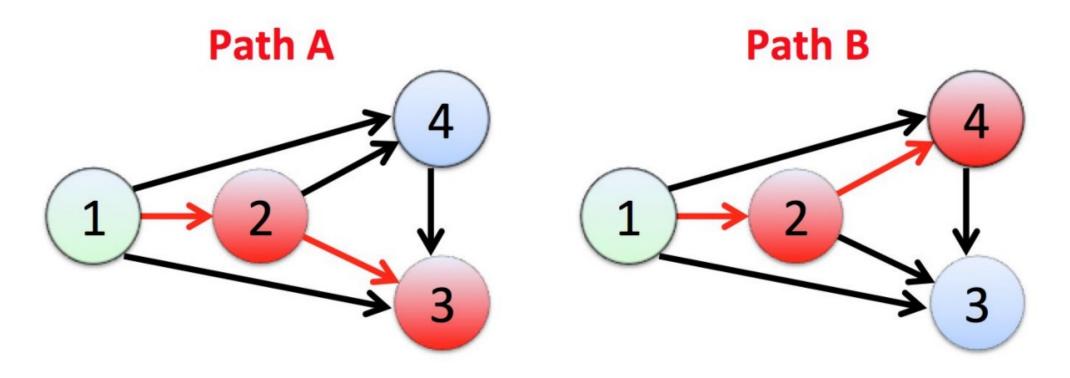
FH: 3 FW: 3 M

FH: 3 FW: 3 N: 4

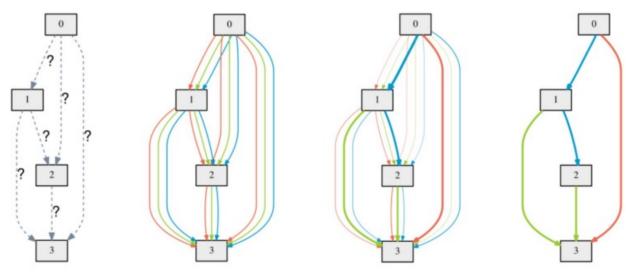
FH: 3 FW: 3 N: 3

Image

How To Make NAS More Efficient?



- Currently, models defined by **path A** and **path B** are trained independently
- Instead, treat all model trajectories as sub-graphs of a single directed acyclic graph
- Use a search strategy (e.g., RL, Evolution) to choose sub-graphs. Proposed in ENAS (Pham et al, 2018)



Find encoding weights a^* that $\min_{\alpha} \mathcal{L}_{val}(w^*(\alpha), \alpha)$ s.t. $w^*(\alpha) = \operatorname{argmin}_w \mathcal{L}_{train}(w, \alpha)$

Learn design of normal and reduction cells

DARTS (Liu et al., 2018)

Create a mixed operation $\bar{o}^{(i,j)}$ parametrized by $\alpha^{(i,j)}$ for each edge (i,j) while not converged do

- 1. Update architecture α by descending $\nabla_{\alpha} \mathcal{L}_{val}(w \xi \nabla_{w} \mathcal{L}_{train}(w, \alpha), \alpha)$
 - $(\xi = 0 \text{ if using first-order approximation})$
- 2. Update weights w by descending $\nabla_w \mathcal{L}_{train}(w, \alpha)$

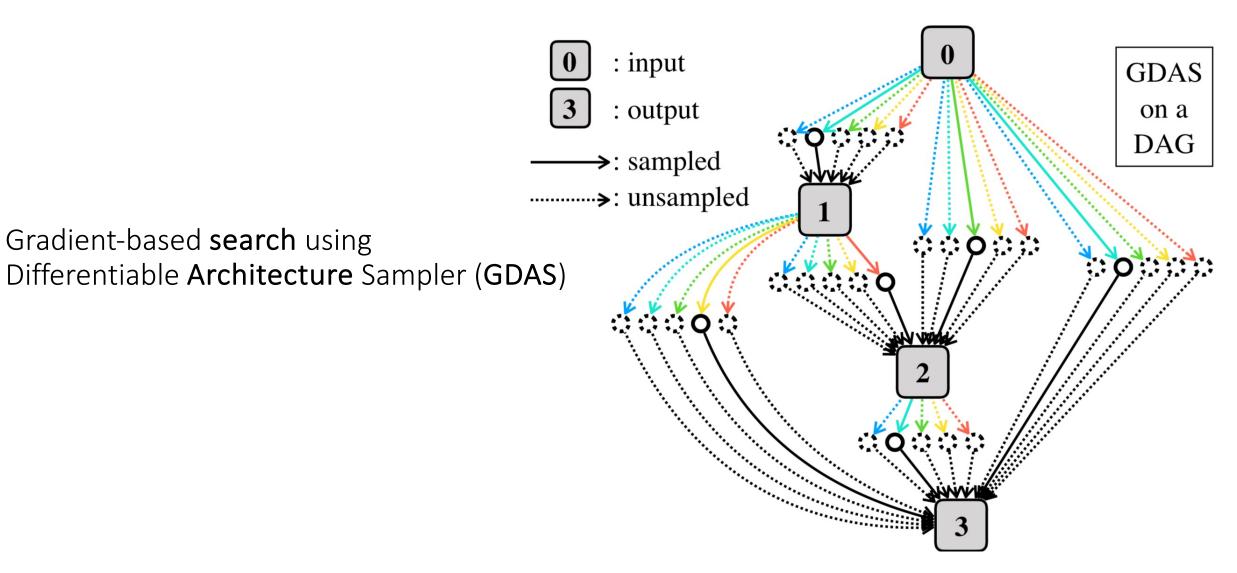
Derive the final architecture based on the learned α .

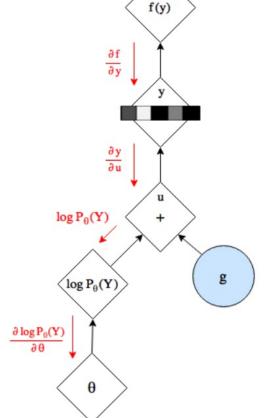
Efficient NAS with Weight Sharing: Results on CIFAR-10

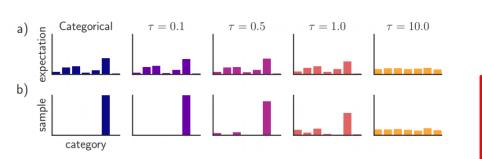
Reference	Error (%)	Params (Millions)	GPU Days
Pham et al. (2018)	3.54	4.6	0.5
Pham et al. (2018) + Cutout	2.89	4.6	0.5
Bender et al. (2018)	4.00	5.0	N/A
Casale et al. (2019) + Cutout	2.81	3.7	1
Liu et al. $(2018c)$ + Cutout	2.76	3.3	4
Xie et al. $(2019b) + Cutout$	2.85	2.8	1.5
Cai et al. (2019) + Cutout	2.08	5.7	8.33
Brock et al. (2018)	4.03	16.0	3
Zhang et al. (2019)	4.30	5.1	0.4

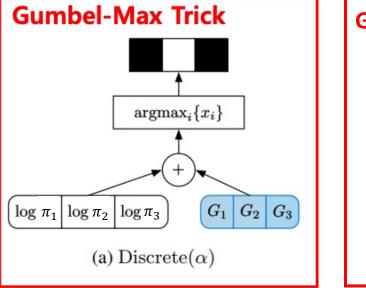
Limitations:

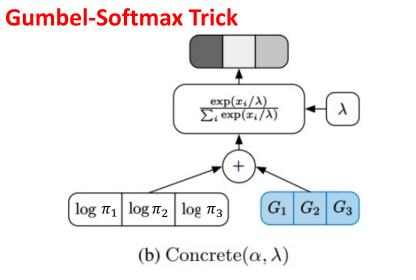
- Restrict the search space to the subgraphs of the supergraph
- Can bias the search towards certain regions of the search space
- In practice, the need to hold entire supergraph in GPU memory restricts search space size







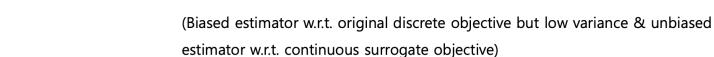




draw samples z from a categorical distribution with class probabilities π :

$$z = \text{one_hot}\left(\arg\max_{i}\left[g_i + \log\pi_i\right]\right)$$

To sample from a discrete categorical distribution we draw a sample of Gumbel noise, add it to $log(\pi_i)$, and use argmax to find the value of *i* that produces the maximum.



Plug & play (easy to code and implement)

Biased but low variance estimator

Computational efficiency

```
- Better performance
```

def sample_gumbel(shape, eps=1e-20):
"""Sample from Gumbel(0, 1)"""
U = tf.random_uniform(shape,minval=0,maxval=1)
return -tf.log(-tf.log(U + eps) + eps)

z = gumbel(loc=0, scale=1, size=x.shape)

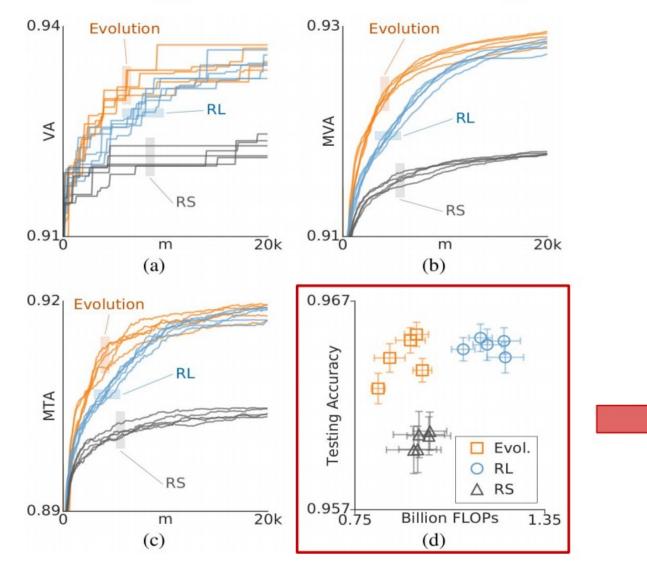
def gumbel max sample(x):

return (x + g).argmax(axis=1)

Smoothing relaxation

def gumbel_softmax_sample(logits, temperature):
""" Draw a sample from the Gumbel-Softmax distribution"""
y = logits + sample_gumbel(tf.shape(logits))
return tf.nn.softmax(y / temperature)

Inverse Transform Sampling



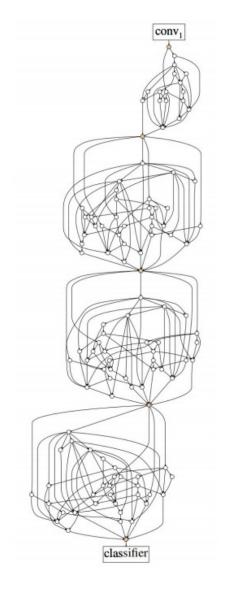
Real et al. (2018)

The difference in accuracy between best models found by random search, RL, and Evolution is **less than 1%** on CIFAR-10

		Test Error		Params
Architecture	Source	Best	Average	(M)
NASNet-A ^{#*}	[52]	N/A	2.65	3.3
AmoebaNet-B*	[43]	N/A	2.55 ± 0.05	2.8
ProxylessNAS [†]	[7]	2.08	N/A	5.7
GHN ^{#†}	[50]	N/A	2.84 ± 0.07	5.7
SNAS^\dagger	[47]	N/A	2.85 ± 0.02	2.8
ENAS [†]	[41]	2.89	N/A	4.6
ENAS	[34]	2.91	N/A	4.2
Random search baseline	[34]	N/A	3.29 ± 0.15	3.2
DARTS (first order)	[34]	N/A	3.00 ± 0.14	3.3
DARTS (second order)	[34]	N/A	2.76 ± 0.09	3.3
DARTS (second order) [‡]	Ours	2.62	2.78 ± 0.12	3.3
ASHA baseline	Ours	2.85	3.03 ± 0.13	2.2
Random search WS [‡]	Ours	2.71	2.85 ± 0.08	4.3

Li and Talwalkar (2019)

Random search baseline finds a model with 2.71% error on CIFAR-10, comparable to best NAS methods based on RL, Evolution, Gradient Descent



Xie et al. (2019)

A network consisting of multiple randomly wired "cells" is only **1.3% less accurate** than a similar capacity NAS models on **ImageNet**

network	test size	epochs	top-1 acc.	top-5 acc.	FLOPs (B)	params (M)
NASNet-A [56]	331 ²	>250	82.7	96.2	23.8	88.9
Amoeba-B [34]	331^{2}	>250	82.3	96.1	22.3	84.0
Amoeba-A [34]	331^{2}	>250	82.8	96.1	23.1	86.7
PNASNet-5 [26]	331 ²	>250	82.9	96.2	25.0	86.1
RandWire-WS	320^{2}	100	$81.6_{\pm 0.13}$	$95.6_{\pm 0.07}$	$16.0_{\pm 0.36}$	$61.5_{\pm 1.32}$

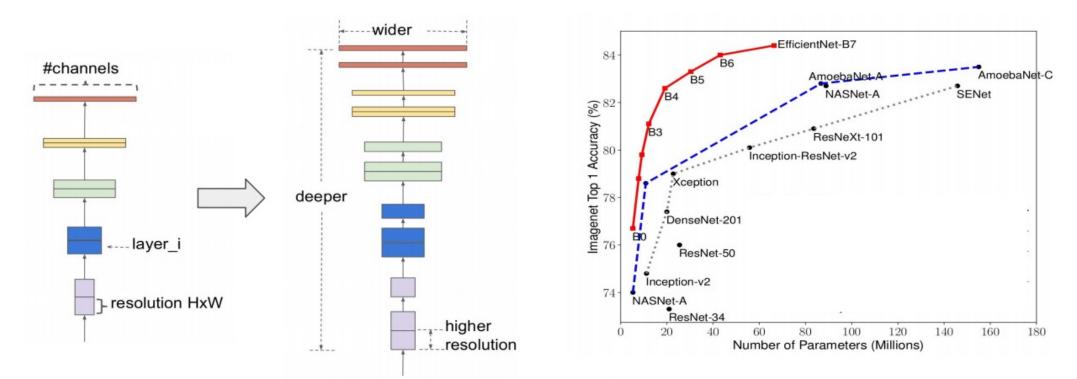
- Random search is a competitive baseline
- How do you design more flexible search spaces and sample-efficient search methods?
- Can intelligent search methods help discover new design motifs and basic building blocks?

Designing Efficient Architectures

Introduce constraints like memory and inference time in addition to accuracy

NAS Method	References		
Constrained Optimization	Tan et al. (2018), Cai et al. (2018), Hsu et al. (2018)		
Multi-objective Optimization	Kim et al. (2017), Cai et al. (2019), Lu et al. (2018), Dong et al. (2018), Elsken et al. (2019), Tan and Le (2019)		
Automated Pruning	He et al. (2019)		

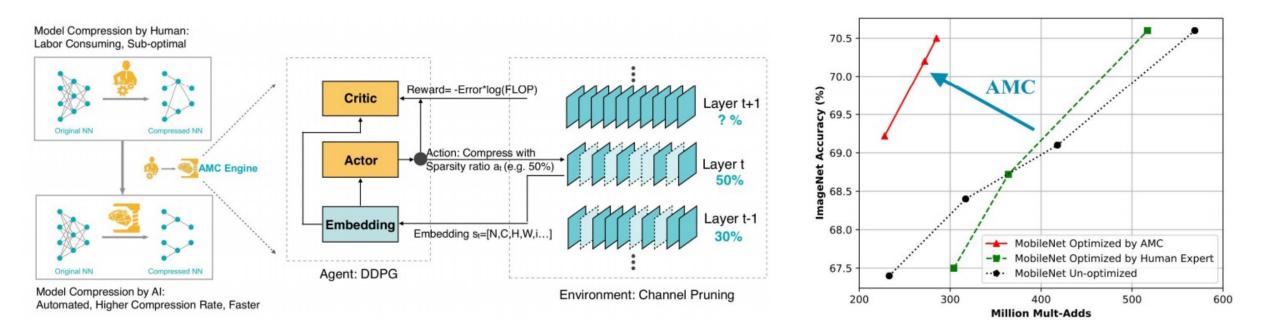
Designing Efficient Architectures from Scratch



EfficientNet (Tan and Le, 2019)

RL-based architecture search for a feed-forward block + scaling up using grid search 80% Top-1 Accuracy on ImageNet with 5x fewer parameters and 13x fewer FLOPS than best human-designed model

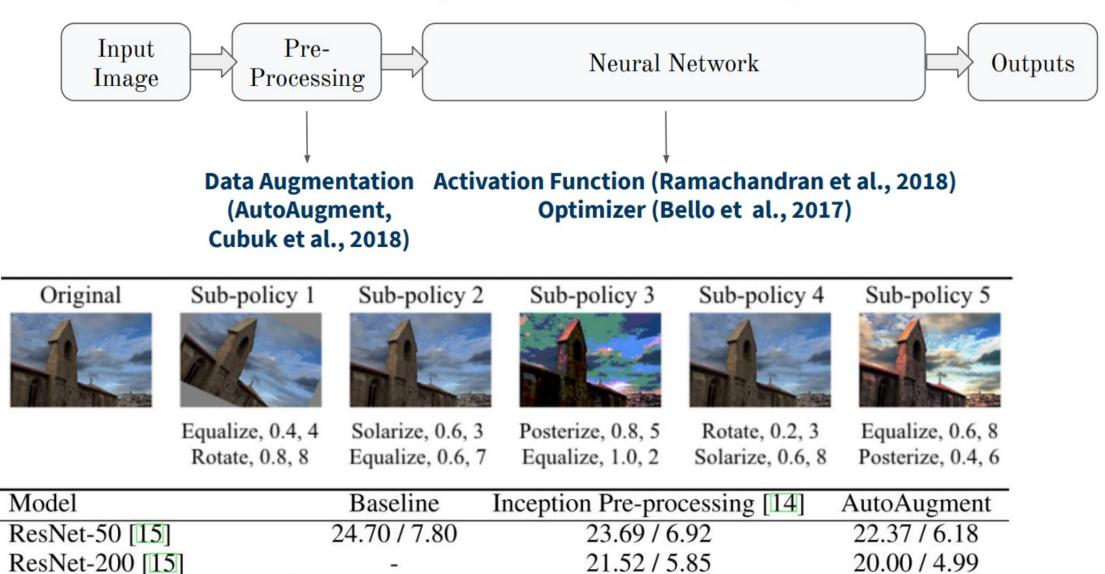
Designing Efficient Architectures: Auto-Pruning



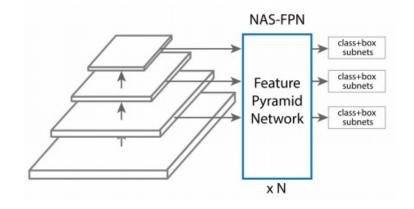
AMC: AutoML for Model Compression (He et al., 2019)

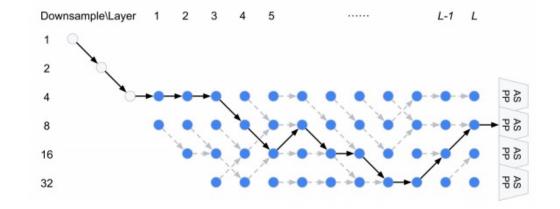
Using Deep Deterministic Policy Gradients to learn pruning ratio for each layer

Automating the Deep Learning Stack

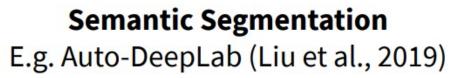


Neural Architecture Search: Beyond Image Classification





Object Detection E.g. NAS-FPN (Ghaisi et al., 2019)



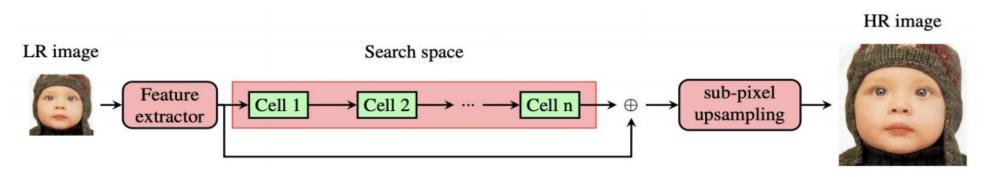


Image Super-Resolution e.g. MoreMNAS(Chu et al., 2019)

Neural Architecture Search (NAS): Summary

Status Quo:

• *Nascent area*: most work on image domain

What Remains to be Explored?

- *More tasks:* "real" complicated applications
- *More model types:* e.g., generative models
- More data modalities: beyond images
- Moving towards less constrained search spaces
- Theory Understanding, Faster Search, Tiny ML...

Key Challenges:

- Complicated applications → complex model → explosively larger search space
- Complex models → hard and unstable to train → affecting model selection

Mainstream Idea (for now): "Manual" Design as Priors

- Previous handcrafted models have identified consistent and successful design patterns
- Simplify search space and algorithm smartly, with those "manual design priors"
- But remember, it's not really "auto" yet ...

Model Architecture: the "Visible Workhorse"

Training/Updating Algorithm: the "Unseen Hero"

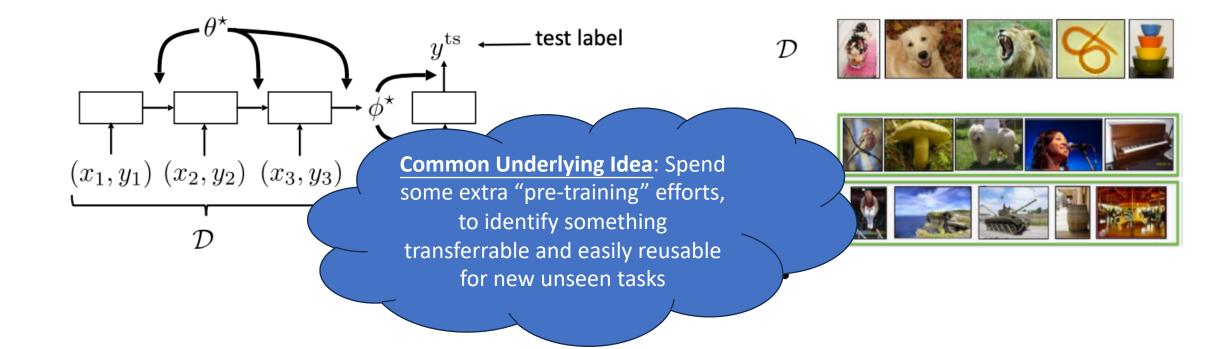
Can we also "automate" it?

Meta Learning: General Math Form

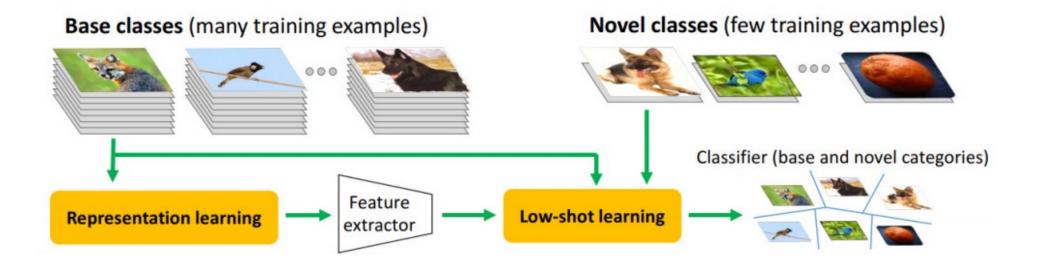
meta-learning: $\theta^{\star} = \arg \max_{\theta} \log p(\theta | \mathcal{D}_{\text{meta-train}})$

adaptation: $\phi^{\star} = \arg \max_{\phi} \log p(\phi | \mathcal{D}, \theta^{\star})$

 $\mathcal{D} = \{(x_1, y_1), \dots, (x_k, y_k)\}$ $\mathcal{D}_{\text{meta-train}} = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$ $\mathcal{D}_i = \{(x_1^i, y_1^i), \dots, (x_k^i, y_k^i)\}$



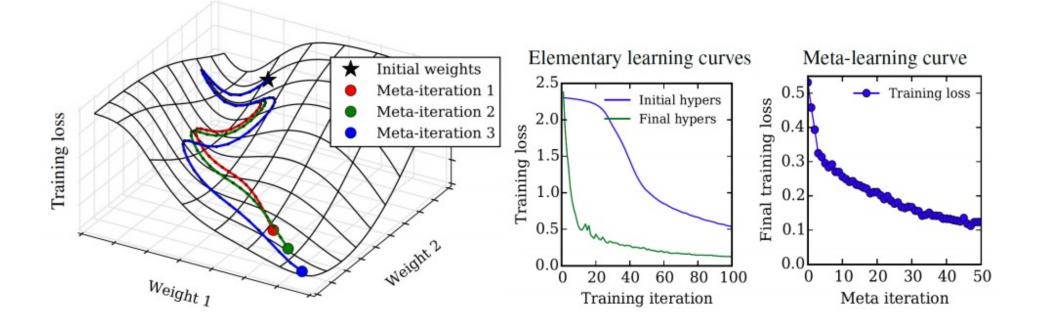
Various Meta-Learning Tasks



Few-shot learning

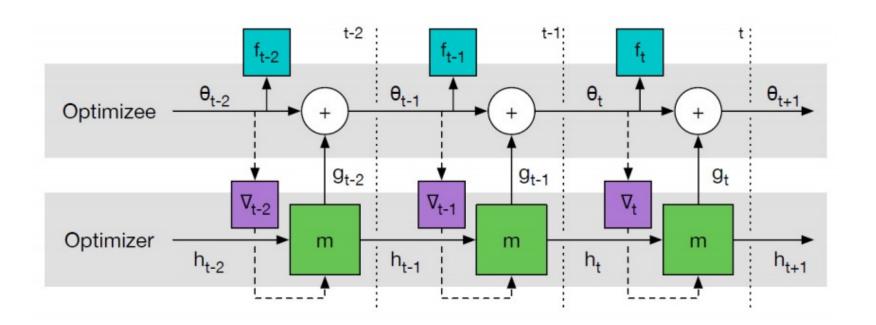
- Learn a model from a large dataset that can be easily adapted to new classes with few instances
- Hariharan and Girshick. Low-shot Visual Recognition by Shrinking and Hallucinating Features. ICCV 2017.

Various Meta-Learning Tasks



- Hyperparameter optimization
 - Compute exact gradients of cross-validation performance with respect to all hyperparameters by chaining derivatives backwards through the entire training procedure
 - Maclaurin et al. Gradient-based Hyperparameter Optimization through Reversible Learning. ICML 2015.

Various Meta-Learning Tasks



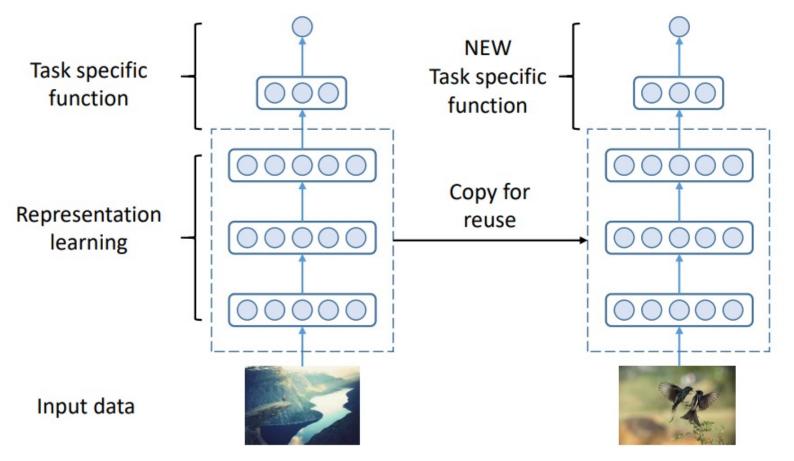
- Learn to produce good gradient
 - An RNN with hidden memory units takes in new raw gradient and outputs a tuned gradient so as to better train the model
 - Andrychowicz et al. Learning to learn by gradient descent by gradient descent. NIPS 2016.

Meta-learning Methods

- Initialization based methods
 - Learning how to initialize the model for the new task
- Recurrent neural network methods
 - Learning how to produce good gradient in an autoregressive manner
- Reinforcement learning methods
 - Learning how to produce good gradient in a reinforcement learning manner

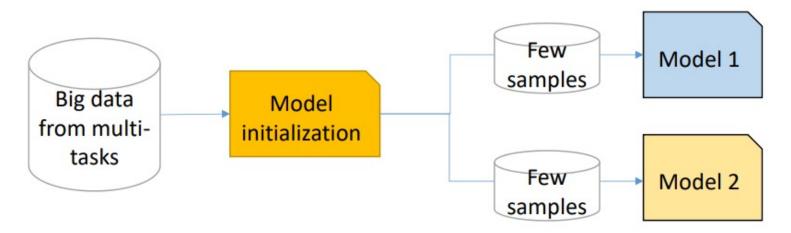
Network Parameter Reuse

 Treat lower layers as representation learning module and reuse them as good feature extractors



Model-Agnostic Meta Learning

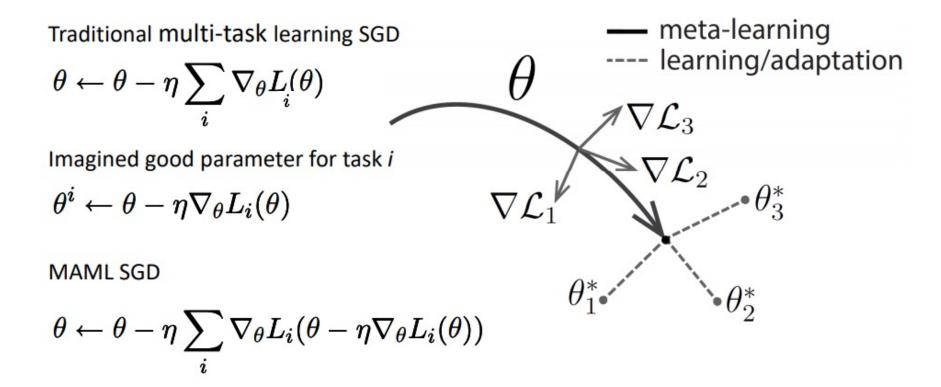
- Goal: train a model that can be fast adapted to different tasks via few shots
- MAML idea: directly optimize for an initial representation that can be effectively fine-tuned from a small number of examples



Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.

Model-Agnostic Meta Learning

 Goal: train a model that can be fast adapted to different tasks via few shots



Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.

Meta-learning Methods

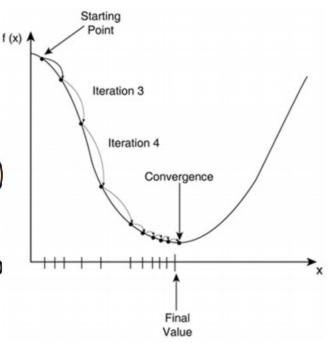
- Initialization based methods
 - Learning how to initialize the model for the new task
- Recurrent neural network methods
 - Learning how to produce good gradient in an autoregressive manner
- Reinforcement learning methods
 - Learning how to produce good gradient in a reinforcement learning manner

Rethink About the Gradient Learning

• The traditional gradient in machine learning

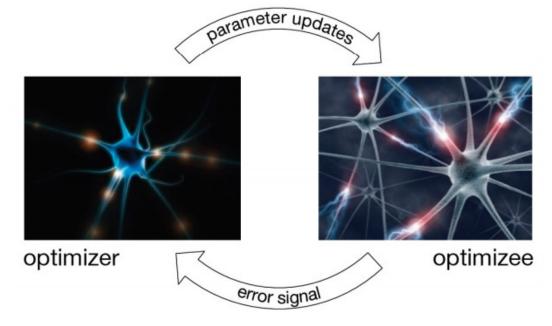
$$\theta_{t+1} = \theta_t - \eta_t \nabla_{\theta_t} L(\theta_t)$$

- Problems of it
 - Learning rate is fixed or changes with a heuristic rule
 - No consideration of second-order information (or even higher-order)
- Feasible idea
 - Memorize the historic gradients to better decide the next gradient



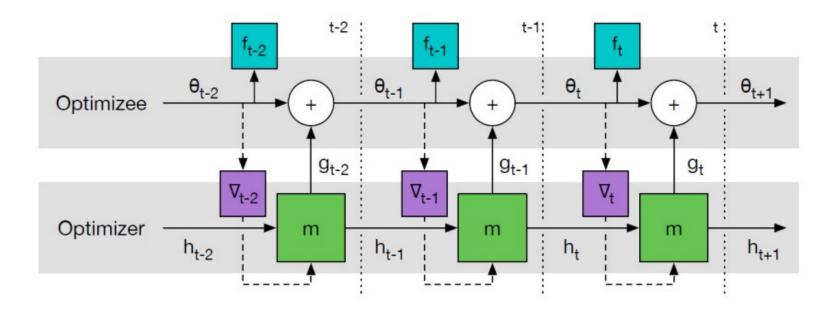
Andrychowicz, Marcin, et al. "Learning to learn by gradient descent by gradient descent." NIPS 2016.

An Optimizer Module to Decide How to Optimize



- Two components: optimizer and optimize
- The optimizer (left) is provided with performance of the optimizee (right) and proposes updates to increase the optimizee's performance

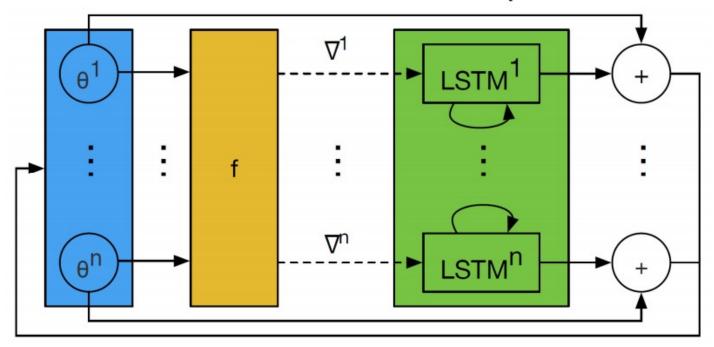
Recurrent Network for Meta-Learning



- With an RNN, the optimizer memorize the historic gradient information within its hidden layer
- The RNN can be directly updated with back-prop algorithms from the loss function

Andrychowicz, Marcin, et al. "Learning to learn by gradient descent by gradient descent." NIPS 2016.

Coordinatewise LSTM Optimizer



- Normally the parameter number n is large, thus a fully connected RNN is not feasible to train
- Above presents a coordinated LSRM, i.e., an LSTMⁱ for each individual parameter θⁱ with shared LSTM parameters

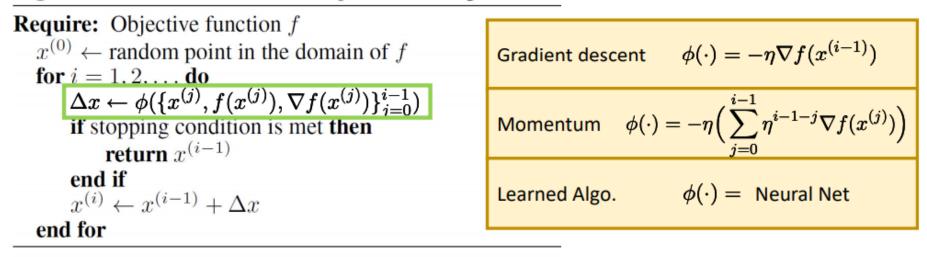
Andrychowicz, Marcin, et al. "Learning to learn by gradient descent by gradient descent." NIPS 2016.

Meta-learning Methods

- Initialization based methods
 - Learning how to initialize the model for the new task
- Recurrent neural network methods
 - Learning how to produce good gradient in an autoregressive manner
- Reinforcement learning methods
 - Learning how to produce good gradient in a reinforcement learning manner

Review of Meta-Learning Methods

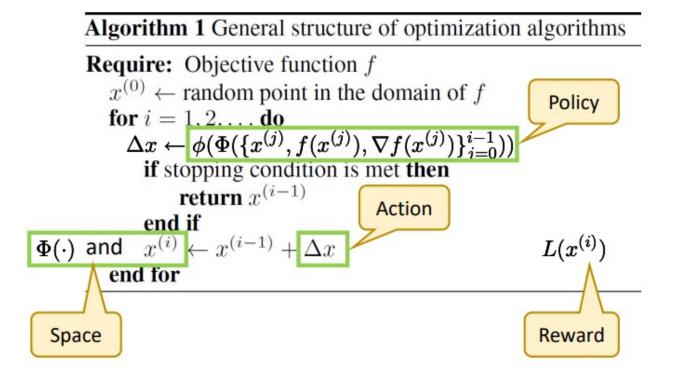
Algorithm 1 General structure of optimization algorithms



- The key of meta-learning (or learning to learn) is to design a good function that
 - takes previous observations and learning behaviors
 - outputs appropriate gradient for the ML model to update

Li, Ke, and Jitendra Malik. "Learning to optimize." arXiv preprint arXiv:1606.01885 (2016).

Formulation as an RL Problem



- State representation is generated from a function $\Phi(\cdot)$ mapping the observed data and learning behavior to a latent representation
- The policy outputs the gradient which is the action
- The reward is from the loss function w.r.t. the current model parameters

Li, Ke, and Jitendra Malik. "Learning to optimize." arXiv preprint arXiv:1606.01885 (2016).

Learning to Optimize (L2O): A Rising AutoML field

' iī 🎘	EECS	✓ Research ✓ Academics & Admissions ✓ People ✓ Network	ews & Events 🛛 🗸 Outreach			
Academics & Admissions	6.890) Learning-Augmented Algorithms	SHARE: +			
cademic nformation	Graduate Units: 3-					
MIT Professional Education		sites: 6.036 or equivalent, 6.046 or equivalent				
EECS curriculum - dynamic graphical display		TECHNOLOGICAL				
Subject Updates Fall 2019		AT CHICAGO				
Subject UPDATES Spring 2019	Summ	er Workshop on Learning-Bas	sed Algorithms			
6.S077 6.S081	This workshop will cover recent developments in using machine learning to improve the performance of "classical" algorithms, by adapting their behavior to the properties of the input distribution. This reduces their running time, space usage or improves their accuracy, while (often) retaining worst case guarantees.					
6.5082/6.888 6.645	The workshop will cover general approaches to designing such algorithms, as well as specific case studies. We plan to cover learning-augmented methods for designing data structures, streaming and sketching algorithms,					
(000	on-line algorithms, compressive sensing and recovery, error-correcting codes, scheduling algorithms, and combinatorial optimization. The attendees span a diverse set of areas, including theoretical computer science, machine learning, algorithmic game theory, coding theory, databases and systems.					
	When: Where:	12 - 14 August 2019 Toyota Technological Institute at Chicago (TTIC) 6045 S Kenwood Ave,				
	Organizers	Chicago, IL 60637 : Piotr Indyk (MIT), Yaron Singer (Harvard), Ali Vakilian (MI	IT) and Sergei Vassilvitskii (Google NY			

Sear	rch or jump to 7 Pull rec	uests Issues Codespaces Marketplac	e Explore
VITA-G	roup / Open-L2O Public		
> Code	⊙ Issues 1 \$\$ Pull requests 1 €) Actions 🖽 Projects 😲 Security	🗠 Insights
	ਤਿ main → ਤਿ 2 branches 🛇 0 tags		Go to file Add file - Code
	Tianlong-Chen Examine all models ag	gain	06d3860 on May 21, 2021 ⊙ 45 commi
	Figs	Updated main README	last ye
	Model_Base_L2O	Model-based files	last ye
	Model_Free_L2O	Examine all models again	last ye
	🕒 .gitignore	remove .vscode	2 years ag
		Init Toolbox	2 years ag
	C README.md	Update README.md	last ye
	i∃ README.md		

Open-L2O

This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of problems and settings. We release our software implementation and data as the Open-L2O package, for reproducible research and fair benchmarking in the L2O field. [Paper]

5

Ļ

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering