

The Rise of Automation for
ML

Hyperparameter Tuning
(algorithm optimization)

Auto-Weka, Auto-sklearn,
H2O AutoML…

Neural Architecture Search
(model construction) Auto-Keras, AutoGluon…

Platform & Full Pipeline
Automation

Google Cloud AutoML,
AWS Autopilot, H2O
Driverless AI …

Traditional ML Lifecycle

• Model: What to Use
• By cross-validation, trial-and-error ...
• Or experience (a.k.a. luck)

• Algorithm: How to Train
• Analytical algorithms, or heuristics
• Deep learning: SGD etc. for them all

• Hardware: How to Deploy
• Manual design of hardware & system
• … and separately from model/algorithm

Automated ML Lifecycle

• Model: What to Use
• Automatically discover the best model from

the specific problem and data

• Algorithm: How to Train
• Automatically customize an algorithm for the

specific problem, data & model

• Hardware: How to Deploy
• Automatically explore the co-design space for

joint system-level optimization

Architecture: the workhorse of Deep Learning

Neural Architecture Search (NAS)

Ø View 1: NAS as constrained optimization
Ø View 2: NAS as an MCMC process

Early Works in NAS

• Neuroevolution: Evolutionary algorithms
• Random search
• Bayesian optimization for architecture and hyperparameter tuning
• Reinforcement Learning (2017)

Key Ideas: NAS via RL:
Zoph and Le (2017)

Update Use RL to update the parameters of the Controller model based on the accuracy
(“Reward”) of the child model

Evaluate Train this architecture (“Child Network”) to see its performance on a validation set

Sample Use a RNN (“Controller”) to generate this string that specifies a neural network
architecture

Represent Specify the structure and connectivity of a NN by a configuration string (e.g.,
[“Filter Width: 5”, “Filter Height: 3”, “Num Filters: 24”])

Cell-based Search Space

Gradient-based search using
Differentiable Architecture Sampler (GDAS)

Gumbel-Softmax Trick

𝜋! 𝜋" 𝜋# 𝜋" 𝜋#𝜋!

Status Quo:

• Nascent area: most work on image domain

What Remains to be Explored?

• More tasks: “real” complicated applications

• More model types: e.g., generative models

• More data modalities: beyond images

• Moving towards less constrained search spaces

• Theory Understanding, Faster Search, Tiny ML…

Key Challenges:
• Complicated applications → complex

model → explosively larger search space

• Complex models → hard and unstable to
train → affecting model selection

Neural Architecture
Search (NAS): Summary

Mainstream Idea (for now): “Manual” Design as Priors

• Previous handcrafted models have identified
consistent and successful design patterns

• Simplify search space and algorithm smartly, with
those “manual design priors”

• But remember, it’s not really “auto” yet …

Training/Updating Algorithm:
the “Unseen Hero”
 Can we also “automate” it?

Model Architecture:
the “Visible Workhorse”

Meta Learning: General Math Form

Common Underlying Idea: Spend
some extra “pre-training” efforts,

to identify something
transferrable and easily reusable

for new unseen tasks

Meta-learning Methods

• Initialization based methods
• Learning how to initialize the model for the new task

• Recurrent neural network methods
• Learning how to produce good gradient in an auto-

regressive manner

• Reinforcement learning methods
• Learning how to produce good gradient in a

reinforcement learning manner

Meta-learning Methods

• Initialization based methods
• Learning how to initialize the model for the new task

• Recurrent neural network methods
• Learning how to produce good gradient in an auto-

regressive manner

• Reinforcement learning methods
• Learning how to produce good gradient in a

reinforcement learning manner

Meta-learning Methods

• Initialization based methods
• Learning how to initialize the model for the new task

• Recurrent neural network methods
• Learning how to produce good gradient in an auto-

regressive manner

• Reinforcement learning methods
• Learning how to produce good gradient in a

reinforcement learning manner

Learning to
Optimize (L2O):
a

A Rising AutoML field

Many lenses to “view” optimization as learning
• Reinforcement Learning (current variable -> state; loss ->
reward; update -> action)

• Markovian Chain/Recurrent NN

• Feedback-loop System (unrolling)

... leading to many ways to make optimization “learnable”

Definition: What is learning to optimize (L2O)?
Using ML to improve classical optimization algorithms, by
adapting their behaviors to problem & data of interest, via:

• tuning existing algorithms (e.g., LISTA) - “white box”

• creating new algorithms (LSTM, RL …) - “black box”
• and many in between (PnP, RED, DIP, …) - “gray box”

