The University of Texas at Austin
Electrical and Computer
Engineering
Cockrell School of Engineering

Fall 2023

ADVANCED TOPICS IN
COMPUTER VISION

Atlas Wang
Associate Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin
https://vita-group.github.io/

(©) 2 Qe [NEIB)

Productivity

The Rise of Automation for

ML

Hyperparameter Tuning

(algorithm optimization)

Neural Architecture Search

(model construction)

Platform & Full Pipeline
Automation

Auto-Weka, Auto-sklearn,
H20 AutoML...

Auto-Keras, AutoGluon...

Google Cloud AutoML,
AWS Autopilot, H20
Driverless Al ...

* Model: What to Use

N

e By cross-validation, trial-and-error ...
e Or experience (a.k.a. luck)

Traditional ML Lifecycle

e Algorithm: How to Train

* Analytical algorithms, or heuristics
e Deep learning: SGD etc. for them all

* Hardware: How to Deploy

* Manual design of hardware & system

K and separately from model/algority

o
Automated ML Lifecycle

e Model: What to Use

* Automatically discover the best model from
the specific problem and data

e Algorithm: How to Train

e Automatically customize an algorithm for the
specific problem, data & model

* Hardware: How to Deploy

e Automatically explore the co-design space for
joint system-level optimization

Architecture: the workhorse of Deep Learning

80
75
£ 70
>
=
g 65
-~
a
©
60

55

50 ==

P)G*\i\e*“ \
Al

e‘ ,\,“" ,\ﬁ’ 39

39“ e{,“ e(,V\e ceQ"

Canziani et al (2017)

Filter concat

Filter concat Filter concat

Complex hand-engineered layers from
Inception-V4 (Szegedy et al., 2017)

Design Innovations (2012 - Present): Deeper networks, stacked modules, skip

connections, squeeze-excitation block, ...

Can we try and learn good architectures automatically?

Neural Architecture Search (NAS)

pick
architecture
from search
space

Search ‘ Search ‘
strategy _

return
performance
estimate

Performance

estimation
strategy

space

» View 1: NAS as constrained optimization
» View 2: NAS as an MCMC process

NEURAL ARCHITECTURE SEARCH WITH
REINFORCEMENT LEARNING

Barret Zoph;, Quoc V. Le
Google Brain

DESIGNING NEURAL NETWORK ARCHITECTURES
USING REINFORCEMENT LEARNING

Bowen Baker, Otkrist Gupta, Nikhil Naik & Ramesh Raskar
Media Laboratory
Massachusetts Institute of Technology

0000000000
EEEEEREEREXX Sample architecture A
with probability p

[v

Trains a child network

Key Ideas: NAS via RL: ol
/oph and Le (2017) i J

Compute gradient of p and
scale it by R to update
the controller

Specify the structure and connectivity of a NN by a configuration string (e.g.,

Represent [“Filter Width: 5”, “Filter Height: 3”, “Num Filters: 24”])

Use a RNN (“Controller”) to generate this string that specifies a neural network
architecture

Train this architecture (“Child Network”) to see its performance on a validation set

Use RL to update the parameters of the Controller model based on the accuracy
(“Reward”) of the child model

Cell-based Search Space

Softmax

Reduction Cell

Reduction Cell

Image

CIFAR10
Architecture

(Cell i

Block 1

Block |2

max
EB 3x3

NASNet
Zoph et al. (2018)

Softmax

Reduction Cell

Reduction Cell

Reduction Cell

1

x2

3x3 conv, stride 2

1

Image

ImageNet
Architecture

Results on CIFAR-10

Model | Depth Parameters | Error rate (%)

Wide ResNet (Zagoruyko & Komodakis, 2016) 16 11.0M 481
28 36.5M 4.17

ResNet (pre-activation) (He et al., 2016b) 164 1.7M 5.46
1001 10.2M 4.62

DenseNet (L = 40, k = 12) Huang et al. (2016a) 40 1.0M 5.24
DenseNet(L = 100, k = 12) Huang et al. (2016a) 100 7.0M 4.10
DenseNet (L = 100, k = 24) Huang et al. (2016a) 100 27.2M 3.74
DenseNet-BC (L = 100, k = 40) Huang et al. (2016b) 190 25.6M 3.46
Neural Architecture Search v1 no stride or pooling 15 42M 5.50
Neural Architecture Search v2 predicting strides 20 2.5M 6.01
Neural Architecture Search v3 max pooling 39 7.1M 4.47
Neural Architecture Search v3 max pooling + more filters 39 37.4M 3.65
MetaQNN (Baker et al. 2017) no skip connections 12 11.8M 6.92

Comparable accuracy to best
human-designed models ~2017

Best NAS Architecture on CIFAR-10
Zoph and Le (2017)

How To Make NAS More Efficient?

Path A Path B

* Currently, models defined by path A and path B are trained independently

« Instead, treat all model trajectories as sub-graphs of a single directed acyclic graph

« Use asearch strategy (e.g., RL, Evolution) to choose sub-graphs. Proposed in ENAS (Pham et al, 2018)

Gradient-based NAS with Weight Sharing

% Find encoding weights a* that

min Ly (w*(a), a)

s.t. w*(a) = argmin,, Lirqin(w, @)

/ Learn design of normal and reduction cells

DARTS (Liu et al., 2018)

Create a mixed operation 6(*7) parametrized by a*7) for each edge (3, j)
while not converged do
1. Update architecture o by descending V o, L1 (w — €V Lirain (W, @), @)
(& = 0 if using first-order approximation)
2. Update weights w by descending V , Ltqin (W,)

Derive the final architecture based on the learned a.

Also see: SNAS (Xie et al. 2019)

Efficient NAS with Weight Sharing: Results on CIFAR-10

Reference Error (%) Params (Millions) GPU Days
Pham et al. (2018) 3.54 4.6 0.5
Pham et al. (2018) + Cutout 2.89 4.6 0.5
Bender et al. (2018) 4.00 5.0 N/A
Casale et al. (2019) + Cutout 2.81 B[1
Liu et al. (2018c) + Cutout 2.76 3.3 4
Xie et al. (2019b) + Cutout 2.85 2.8 (i
Cai et al. (2019) + Cutout 2.08 8.7 8.33
Brock et al. (2018) 4.03 16.0 3
Zhang et al. (2019) 4.30 5.1 0.4
Limitations:

* Restrict the search space to the subgraphs of the supergraph
« Can bias the search towards certain regions of the search space

« In practice, the need to hold entire supergraph in GPU memory restricts search space size

Gradient-based NAS with Weight Sharing

0] :input
3 | :output
—>: sampled
covuesnens] unsamp]ed
Gradient-based search using
Differentiable Architecture Sampler (GDAS

.
av

v

& """

Gradient-based NAS with Weight Sharing

Gumbel-Max Trick Gumbel-Softmax Trick

W |

A

exp(zi/A
argmax; {z; } [ST et

[log mq | log m, logngj [Gl G, G;J (log 7y | log r, | log 7T3J [Gl Go Gs]

(a) Discrete(a) (b) Concrete(a, \)

draw samples z from a categorical distribution with class proBabilities :

Z = one_hot (arg max [gz' + log Wz])

2

5 Categorical 7=0.1 7=05 7=10 7 =10.0
A To sample from a discrete categorical distribution we draw a
3 l l M | \._.__L leeeoo. | sample of Gumbel noise, add it to log(m;), and use argmax

category

to find the value of i that produces the maximum.

Gradient-based NAS with Weight Sharing

 Biased but low variance estimator

(Biased estimator w.r.t. original discrete objective but low variance & unbiased

estimator w.r.t. continuous surrogate objective)

* Plug & play (easy to code and implement)

def gumbel_max_sample(x):
z = gumbel(loc=0, scale=1, size=x.shape)
return (x + g).argmax(axis=1)

« Computational efficiency

+Better performance

l Inverse Transform Sampling

def sample gumbel(shape, eps=1e-20):
"""Sample from Gumbel(o, 1)"""
U = tf.random_uniform(shape,minval=0,maxval=1)
return -tf.log(-tf.log(U + eps) + eps)
Smoothing relaxation
def gumbel softmax sample(logits, temperature):
""" Draw a sample from the Gumbel-Softmax distribution™""
y = logits + sample gumbel(tf.shape(logits))

return tf.nn.softmax(y / temperature)

Are Intelligent Search Strategies Better Than Random Search?

0.94, Evolution 0.93, Evolution

VA
MVA

0.91

0 0 m 20k
(b)

0.92 0.967-
| U Real et al. (2018)
W o Wkl - The difference in accuracy

= = ‘ between best models

% :#f“ 5 Evol found by random search,
i A RS RL, and Evolution is

0.89 (;n ok | ©2°d%s Bm(izr)u FLOPs 1.35 less than 1% on CIFAR-10

C

Are Intelligent Search Strategies Better Than Random Search?

Test Error Params

Architecture Source Best Average (M)
NASNet-A™ [52] N/A 2.65 33
AmoebaNet-B* [43] N/A 2.55+0.05 2.8 >
ProxylessNAS' (7] 2.08 N/A 5.7 Li and Talwalkar (20?'9)
GHN*' [50] N/A 2.84+007 57 Random search baseline
SNAS' [47] N/A 285+0.02 28 finds a model with 2.71%

T
gmg E‘H 22? Eﬁ 2 i'g error on CIFAR-10,
Random search baseline [34] N/A 3.29+0.15 3.2 Comparable to best NAS
DARTS (first order) [34] N/A 3.00+0.14 33 methods based on RL,
DARTS (second order) [34] N/A 2.76 +0.09 3.3 Evolution, Gradient Descent
DARTS (second order)* Ours 2.62 2.78+0.12 3.3
ASHA baseline Qurs 2.85 3.03+0.13 2.2

Random search WS* Ours 271 2.85+0.08 4.3

Are Intelligent Search Strategies Better Than Random Search?

on ImageNet

Xie et al. (2019)
A network consisting of multiple randomly wired “cells” is
only 1.3% less accurate than a similar capacity NAS models

test

network size |€pochs|top-1acc. top-5acc. |FLOPs (B) params (M)
NASNet-A [56] |331%| >250 |82.7 96.2 23.8 88.9
Amoeba-B [34] |3312%| >250 (82.3 96.1 223 84.0
Amoeba-A [34] |331%| >250 [82.8 96.1 231 86.7
PNASNet-5 [26]]3312 | >250 |82.9 96.2 25.0 86.1
RandWire-WS [320%| 100 81.640.13 95.64007(16.04036 61.54+1.32

Are Intelligent Search Strategies Better Than Random Search?

e Random search is a competitive baseline

e How do you design more flexible search spaces and sample-efficient search
methods?

e Canintelligent search methods help discover new design motifs and basic
building blocks?

Designing Efficient Architectures

Introduce constraints like memory and inference time in addition to accuracy

NAS Method
Constrained Optimization

Multi-objective Optimization

Automated Pruning

References
Tan et al. (2018), Cai et al. (2018), Hsu et al. (2018)

Kim et al. (2017), Cai et al. (2019), Lu et al. (2018), Dong et al.
(2018), Elsken et al. (2019), Tan and Le (2019)

He et al. (2019)

Designing Efficient Architectures from Scratch

w----wider ------ -
S | EfficientNet-B7
? 84 1
——
#charlnels _1_ AoghatieiAr === =~ AmoebaNet-C
-------- .®
! ' L a2) ~” NASNet-A .e+**"" SENet
—) s t ,? I.\‘.Z ’/ g .
A j 2 0
; > ot
; © 3 _.-+""" ResNeXt-101
| - 2 Q "
H § 80 ,/’_ .- Inception-ResNet-v2
; e
' ol e
[: A ¢~ :Xception
deeper 27e{ 1 :
] . 3
i TR
: ‘ S ; -DenseNet-201
. 51 3
1 : 80 -
----layer_i - £ 76 &
- ayer_ ! E1 T 5 ResNet-50
5 | I g
[:l " Inception-v2
: 74
} resolution HXW { NASNet-A
" _ResNet-34 . L .
. --4--higher 0 20 10 60 <0 100 120 140 160 180
a9) |+ resolution Number of Parameters (Millions)

EfficientNet (Tan and Le, 2019)
RL-based architecture search for a feed-forward block + scaling up using grid search
80% Top-1 Accuracy on ImageNet with 5x fewer parameters and 13x fewer FLOPS
than best human-designed model

Designing Efficient Architectures: Auto-Pruning

Model Compression by Human:
Labor Consuming, Sub-optimal

Model Compression by Al:

Automated, Higher Compression Rate, Faster

L @
>]
.« E) Y
LS o
L ?
L E
£ o
Original NN smpressed N
@ o
> @
L \ o
) —
L]
» @
e @
Original NN Compressed NN

Reward= -Error*log(FLOP)

lAction: Compress with

Actor Sparsity ratio a:(e.g. 50%)

Embedding

Embedding si=[N,C,H,W,i...]

Agent: DDPG

'V Layer t+1

? %

Layer t
50%

Layer t-1
30%

Environment: Channel Pruning

70.5 1

~
°
o

(=2}
©
n

ImageNet Accuracy (%)
=) -3
@ [Te]
s, o

o
@
(<]

67.5 1

/

/ —&— MobileNet Optimized by AMC

—-#- MobileNet Optimized by Human Expert

--®- MobileNet Un-optimized

200

300

400 500
Million Mult-Adds

AMC: AutoML for Model Compression (He et al., 2019)
Using Deep Deterministic Policy Gradients to learn pruning ratio for each layer

600

Automating the Deep Learning Stack

)))
npu e Neural Network Outputs
Image) Processing |)

Data Augmentation Activation Function (Ramachandran et al., 2018)

(AutoAugment, Optimizer (Bello et al., 2017)
Cubuk et al., 2018)
Original Sub-policy 1 Sub-policy 2 Sub-policy 3 Sub-policy4 Sub-policy 5

.
-~
* g

Equalize, 0.4,4 Solarize, 0.6,3 Posterize, 0.8, 5 Rotate, 0.2, 3 Equalize, 0.6, 8
Rotate, 0.8, 8 Equalize, 0.6, 7 Equalize, 1.0,2 Solarize, 0.6, 8 Posterize, 0.4, 6

Model Baseline Inception Pre-processing [14] AutoAugment

ResNet-50 [15] 24.70/7.80 23.69/ 6.92 22.37/6.18
ResNet-200 [15] - 21524 5.85 20.00/4.99

Neural Architecture Search: Beyond Image Classification

NAS-FPN Downsample\Layer 1 2 3 4 5§ 0 e L-1 L
] o ; \
:;:;r;—»";’:g;gg* 4 \»HH e -0 0 ¢ ¢ 000 3
| Network [“asroor 8 o o Mo o o-0 1
/ L 16 -0 O @ o o ® 33
: = 32 ¢ o o-0-0 0\‘0—»/0/:‘%
Object Detection Semantic Segmentation
E.g. NAS-FPN (Ghaisi et al., 2019) E.g. Auto-DeepLab (Liu et al., 2019)
HRimage
LR image Search space

Feature N sub-pixel
extractor —>{ Cell 1 S Cell 2 EEEERERNN Cell n B ETB —’[upsampling]—> @

Image Super-Resolution e.g. MoreMNAS(Chu et al., 2019)

Neural Architecture
Search (NAS): Summary

Status Quo:

* Nascent area: most work on image domain

What Remains to be Explored?

* More tasks: “real” complicated applications
 More model types: e.g., generative models
* More data modalities: beyond images

* Moving towards less constrained search spaces

* Theory Understanding, Faster Search, Tiny ML...

Key Challenges:

 Complicated applications = complex
model — explosively larger search space

 Complex models = hard and unstable to
train — affecting model selection

i
el

Mainstream Idea (for now): “Manual” Design as Priors

Previous handcrafted models have identified
consistent and successful design patterns

Simplify search space and algorlthm smartly, W|th
those “manual design priors”
But remember, it’s not really “auto” yet ...

Model Architecture:
the “Visible Workhorse”

Training/Updating Algorithm:
the “Unseen Hero”

Can we also “automate” it?

Meta Learning: General Math Form

D — {(xlayl)a ceey (xlﬁyk)}
ta-1 ing: 0 = 1 0 Dme a-train
meta-learning arg mglx ng(| ta-t) Dineta-train = {Dl,...,Dn}

[&dapt&tlon: ¢ = arg m(?x logp(¢|D7 0) Dz — {(xia yi)v ceey (xi;a ylzc)}

*
r ﬁ y{s «—test label D

sinninnl

(1,y1) (22,2) (23,93) SammEEindenyinslea s EelE
L some extra “pre-training” efforts,

to identify something

transferrable and easily reusable

for new unseen tasks

Various Meta-Learning Tasks

Base classes (many training examples) Novel classes (few training examples)
. = 777‘ - 2.
i ‘ l Classifier (base and novel categories)
R —» | Fotre | . I — - .
rese on learnin W-snhot learning — “ I ——
P g extractor ~.

* Few-shot learning

* Learn a model from a large dataset that can be easily adapted to new
classes with few instances

* Hariharan and Girshick. Low-shot Visual Recognition by Shrinking and
Hallucinating Features. ICCV 2017.

Various Meta-Learning Tasks

= . Elementary learning curves Meta-learning curve
Initial weights 25 = . g > k
Meta-?teratfonl B Y e s 0-5 —e— Training loss
2 Meta-iteration 2 2.0 Final hypers -
k=) Meta-iteration 3| &
50 A=
= o 1D
c c
'S £ 1.0}
= 3 1.0
“ 05
0.0

L L 1 1 OO 1 1 1 1
0 20 40 60 80 100 0 10 20 30 40 50
Training iteration Meta iteration

* Hyperparameter optimization

* Compute exact gradients of cross-validation performance with respect to
all hyperparameters by chaining derivatives backwards through the
entire training procedure

* Maclaurin et al. Gradient-based Hyperparameter Optimization through
Reversible Learning. ICML 2015.

Various Meta-Learning Tasks

t-2
02 }
T 3

Optimizee

Optimizer

* Learn to produce good gradient

* An RNN with hidden memory units takes in new raw gradient and
outputs a tuned gradient so as to better train the model

* Andrychowicz et al. Learning to learn by gradient descent by gradient
descent. NIPS 2016.

Meta-learning Met hods

* |nitialization based methods
» Learmning how to initialize the model for the new task

* Recurrent neural network methods

 Learming how to produce good gradient in an auto-
regressive manner

 Reinforcement learning methods

 Learing how to produce good gradient in a
reinforcement learning manner

REVIEW

Network Parameter Reuse

* Treat lower layers as representation learning module
and reuse them as good feature extractors

- O B
NEW
Task specific Eij Task specific —
function O Q O function
—————————————— I
l |
[O0000] !
: 1 | Copy for
Representation [= reuse
learning = i LOOOO OJ :
| |
l |
: |
| |

Input data

Model-Agnostic Meta Learning

* Goal: train a model that can be fast adapted to
different tasks via few shots

* MAML idea: directly optimize for an initial
representation that can be effectively fine-tuned
from a small number of examples

Few " Model 1 1

samples
Big data . Model
from multi- initialization 1
tasks
Few | Model 2
samples

Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.

Model-Agnostic Meta Learning

* Goal: train a model that can be fast adapted to
different tasks via few shots

Traditional multi-task learning SGD — meta-learning
---- |earning/adaptation

9<—9—772V9L.(0) 9 J

. ?

v V£3
Imagined good parameter for task i

) g g P v[Q)

6 — 0 —nVeL;(6) V‘Cl ,,,,, o 93
MAML SGD 7N

0 — 60— nZVGLi(e —nVeL;(0))

Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.

Meta-learning Met hods

* |nitialization based methods
 Learning how to initialize the model for the new task

 Recurrent neural network methods

* Leaming how to produce good gradient in an auto-
regressive manner

 Reinforcement learning methods

 Learing how to produce good gradient in a
reinforcement learning manner

Rethink About the Gradient Learning

* The traditional gradient in machine learning

Or+1 = 0 — 1V, L(0:)

* Problems of it =

* Learning rate is fixed or changes
with a heuristic rule

* No consideration of second-order
information (or even higher-order)

* Feasible idea

* Memorize the historic gradients to
better decide the next gradient

Starting

\ / Point

Iteration 3

Iteration 4

Convergence

Y

i1 I g p-p-piy
B o UEEERE

|

Final
Value

Andrychowicz, Marcin, et al. "Learning to learn by gradient descent by gradient descent." N/PS 2016.

An Optimizer Module to Decide How
to Optimize

S

S o

optimizer optimizee
8rror sign@

* Two components: optimizer and optimize

* The optimizer (left) is provided with performance of the
optimizee (right) and proposes updates to increase the
optimizee’s performance

Andrychowicz, Marcin, et al. "Learning to learn by gradient descent by gradient descent." NIPS 2016.

Recurrent Network for Meta-Learning

e1:-2

Optimizee

Optimizer

* With an RNN, the optimizer memorize the historic
gradient information within its hidden layer

* The RNN can be directly updated with back-prop
algorithms from the loss function

Andrychowicz, Marcin, et al. "Learning to learn by gradient descent by gradient descent." NIPS 2016.

Coordinatewise LSTM Optimizer

* Normally the parameter number n is large, thus a fully
connected RNN is not feasible to train

* Above presents a coordinated LSRM, i.e., an LSTM' for each
individual parameter & with shared LSTM parameters

Andrychowicz, Marcin, et al. "Learning to learn by gradient descent by gradient descent." N/PS 2016.

Meta-learning Met hods

* |nitialization based methods
 Learning how to initialize the model for the new task

* Recurrent neural network methods

 Learming how to produce good gradient in an auto-
regressive manner

* Reinforcement learning methods

* Leaming how to produce good gradient in a
reinforcement learning manner

Review of Meta-Learning Methods

Algorithm 1 General structure of optimization algorithms

Require: Objective function f
2") +— random point in the domain of f Gradient descent ¢(-) = —pV f(z¢D)
for'i.:l.‘z....((ji)o 5 =
Ax — ¢({z V'), Vf(z -: i—1
if stoppqiﬁr(lir cor;c{igion 1); mgt(thEI)1}1_0 Momentum ¢(-) = —W(Zﬂt_l_’ V(=))
return 2\~ =0
end if
20 2G-1) L Ag Learned Algo. #(-) = Neural Net
end for

* The key of meta-learning (or learning to learn) is to
design a good function that
* takes previous observations and learning behaviors
* outputs appropriate gradient for the ML model to update

Li, Ke, and Jitendra Malik. "Learning to optimize." arXiv preprint arXiv:1606.01885 (2016).

Formulation as an RL Problem

Algorithm 1 General structure of optimization algorithms

Require: Objective function f

2" « random point in the domain of f
fori= LZ...40
Az — ¢(@({z", f(z9), Vf(@)}ih))
if stopping condition 1s met then

return '~
end if | _
®(-) and 29k 20D HAx L(z®)

end for A

Space Reward l

* State representation is generated from a function ®(-) mapping the

observed data and learning behavior to a latent representation

* The policy outputs the gradient which is the action

* The reward is from the loss function w.r.t. the current model parameters

Li, Ke, and Jitendra Malik. "Learning to optimize." arXiv preprint arXiv:1606.01885 (2016).

O Search or jump to... Pull requests Issues Codespaces Marketplace Explore

I_e alrfnin g to @ VITA-Group Open-L20 rusie
O t * e I—2 O . <> Code (©) Issues (1 19 Pull requests 1 (® Actions [Projects () Security [~ Insights
ptimize . -

¥ main ~ ¥ 2branches © 0 tags Go to file Add file ~
L] L] L]
A | z | S I n g A u tO IVl I_ fl e | d Tianlong-Chen Examine all models again 06d3860 on May 21, 2021
Figs Updated main README
Model_Base_L20 Model-based files
.
III I ‘ ﬁ E ECS Research Academics & Admissions People News & Events Outreach Model_Free L20 Examine all models again
.gitignore remove .vscode
6.890 Learning-Augmented Algorithms SHARE:)
LICENSE Init Toolbox
Academit': Graduate Level
Information Units: 3-0-9 README.md Update README.md
MIT Professional Prerequisites: 6.036 or equivalent, 6.046 or equivalent
Education Inctriirtnares Drnfacenre Cactic Naclalalic and Dintr Indul
T TOYOTA
EECS curriculum - 0
dynamic graphical TECHNOLOGICAL := README.md
Atk n INSTITUTE
P Subject Updates Fall AT CHlCAGO
i i O {e)
+ aeewrones . SUMMer Workshop on Learning-Based Algorithms pen
Spring 2019
This workshop will cover recent developments in using machine learning to improve the performance of
65077 “classical” algorithms, by adapting their behavior to the properties of the input distribution. This reduces their This repository establishes the first comprehensive benchmark efforts of existing Iearning to optimize (LZO)
65081 running time, space usage or improves their accuracy, while (often) retaining worst case guarantees.
) .) ") approaches on a number of problems and settings. We release our software implementation and data as the
6.5082/6.888 The workshop will cover general approaches to designing such algorithms, as well as specific case studies. We
oens plan to cover learning-augmented methods for designing data structures, streaming and sketching algorithms, Open-L20 package, for reproducible research and fair benchmarking in the L20 field. [Paper]
. on-line algorithms, compressive sensing and recovery, error-correcting codes, scheduling algorithms, and
s nnn combinatorial optimization. The attendees span a diverse set of areas, including theoretical computer science,

License B

machine learning, algorithmic game theory, coding theory, databases and systems.

When: 12 - 14 August 2019

Where: Toyota Technological Institute at Chicago (TTIC)
6045 S Kenwood Ave,
Chicago, IL 60637

Organizers: Piotr Indyk (MIT), Yaron Singer (Harvard), Ali Vakilian (MIT) and Sergei Vassilvitskii (Google NYC)

&

The University of Texas at Austin
Electrical and Computer
Engineering

Cockrell School of Engineering

